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We present experimental results and a model of Hamiltonian interactions which takes into account four photons process 
interaction of dressed field with 39K atom. Using the method of elimination of virtual states, we have derived an effective 
interaction Hamiltonian which describes simultaneous generation of photon pairs. By taking into account good cavity limits 
in the process of two photon generation, a master equation for laser field is obtained. A steady state solution of the resulting 
equation for a threshold case, which takes into account the quantum fluctuations and photon statistics, is proposed. 
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1. Introduction 
 
Quantum Information Science (QIS) is an emerging 

field with the potential for revolutionary advances in fields 
of science and engineering involving computation, 
communication, precision measurement, and fundamental 
quantum science. Developments in the physical sciences 
produced trapped atomic ions, advanced optical cavities, 
quantum dots, and many other advances that made it 
possible to contemplate the construction of workable 
quantum logic devices and non-linear optical (NLO) 
applications. Quantum mechanics offers the potential for 
ultra-secure communications rendering eavesdropping, 
copying, and spying impossible. The property of 
entanglement between the emitted photons in the 
processes of light generation has a great impact towards 
applications dealing with quantum information, 
computing, and information security. The problem of 
quantum fluctuations and the generation of non-classical 
electromagnetic fields in multi-photon processes have 
been the subject of extensive theoretical and experimental 
studies in recent years, more specifically two-photon 
coherent generation of light has led to many experimental 
and theoretical studies recently. 

An experimental realization of two-photon laser was 
firstly proposed by Gauthier et al. [1]. Two- photon laser 
consists of spin-polarized and laser-driven 39K atoms 
placed in a high-finesse transverse-mode-degenerate 
optical resonator which produces a beam with a power of 
~ 0.2 Watt at a wavelength of 770 nm. We observed 
complex dynamic instabilities of the state of polarization 
of the two-photon laser, which are made possible by the 
atomic Zeeman degeneracy. Following this experimental 
realization, we propose a model which takes into account 
one- and two-photon losses resulting from the system. The 
Fokker-Plank equation which describes the behavior of 

cavity field below the threshold of lasing process is 
obtained and solved in the stationary case.  

 
 
2. Experimental observations 
 
The two-photon amplification of light is possible in 

multi-level atoms and opens new perspective of 
application the coherence and entanglement between the 
photon in the quantum communication. As an example, 
laser amplification in a thermal vapor of potassium atoms 
39K when laser frequency is tuned in the vicinity of the  

2/12/1 44 PS →   transition. We demonstrate that two-
photon amplification arises in the system by the process of 
four-quantum Hyper-Raman scattering effect as shown in 
Fig. 1. 

 
 

Fig. 1. Scattering diagram showing the Raman two-
photon processes. 

 
In this four photons process stimulated by dressed 

field with the frequency ,dω the atom makes a transition 
from the ground state g   to the new state quasi-stable 

state  i  by absorbing two photons from the dressing field 
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with frequency  ,dω  and generating two new photons to 

the probe lasing field with frequency ,pω via virtual 
intermediate states. Taking into account the law of 
conservation of energy we find that the frequency of new 
generated light  2/gidp Δ−=ωω  , where  giΔ   is the 

energy difference between the states  g   and  i . In this 

experiment, the states  g   and i    correspond to the 
)1(4 2/1 =FS  and  2/14S )2( =F   hyperfine states of 

39K, respectively and  / 2 462gi πΔ =  MHz.  To obtain 
two-photon amplification based on this stimulated 
emission process, a steady-state imbalance must exist 
between the states  g   and  i   so that  ig NN >  , 
which is accomplished by optical pumping of the atom by 
the dressing field. Note that this process is similar to the 
multi-photon scattering. It is thus feasible to understand 
the origin of two-photon amplification process using the 
dressed-state bases for the three-level atom. 

It was pointed out that for n - photon Raman 
scattering processes can occur in a system with probe 
beam frequencies: 

ngid /Δ−= ωω   for n= 1,2,3…[2].  Poelker at all 
[3 ] have extensively studied one-photon Raman process in 
a laser-driven sodium vapor, while Hemerich et al [4] and 
Cattaliotti et al. [5] observed multi-photon Raman 
scattering in cooled  Rb  atoms trapped in the potential 
wells of a  3D optical lattice. 

Furthermore, Agarwal [6] investigated multi-photon 
parametric wave mixing process in laser driven sodium 
atoms. Their experiment uses emission and absorption 
features observed due to scattering from naturally 
abundant potassium  41K, where:  254=Δ gi  MHz . The 
dressing laser beam was linearly polarized to a diameter of  
150 µm  as it passed through the cell, had a power of  850 
mW  at the entrance to the cell, and was tuned 
approximately  2.4 GHz  to the low frequency side of the  
D1  transition  1/24 ( 2)S F =  to   1/ 24 ( 1)P F =   
occurring near  λ=769.9 nm.  The probe beam was 
collimated to a diameter of 65 µm   and had a polarization 
orthogonal, which resulted in the maximum two-photon 
gain. 

Pfister at al [7] demonstrated two photon 
amplification in laser-driven potassium atoms system 
using the orthogonal geometry, and is shown in Fig. 2. The 
interactions are somewhat more complex because the 
magnetic sublevels of the potassium hyperfine states have 
to be taken into account for this geometry (see Fig. 2) to 
the lowest order in the perturbation theory. Laser beam 
amplification occurred when two circularly polarized 
dressing field photons were annihilated and two linearly 
polarized probe photons were created as the atom 
underwent a transition from the  22g  to the 20g   
Zeeman sublevels. The atomic states are denoted by  

F Mα αα  , where  g=α   for the potassium  2/1
24 S   

and  a g=   for the  2/1
24 S   levels. F and M are the 

quantum numbers for the total angular momentum and it's 
projection along the z. 

 

 
 

Fig. 2. Scattering diagram showing the Raman two-
photon processes. 

 
The necessary inversion between the states  22g   

and  20g   was maintained using auxiliary optical 
pumping beams that continuously transferred population 
from all hyperfine states into  22g   (see Fig. 2). In their 
experiment, the atoms are produced by an atomic beam 
with a half-angle divergence of 30 mrad, giving rise to a 
residual Doppler width of 30 MHz with a diameter of  2.5  
mm and an atomic number density of  2 x 1011  atoms/cm3 
in the interaction region. The atoms were dressed with a 
circularly polarized laser beam propagating along the 
quantization axis with an intensity of 25 W/cm2 and its 
frequency tuned to the blue side of the  

1 1g M e M↔   transition by 512 MHz. The 
generation with two-photon (continuous-wave) in laser-
driven potassium atoms was first observed by [1], who 
combined the experimental apparatus from the 
measurements of amplification with a low-loss optical 
resonator. They used a linear cavity consisting of two 
high-reflectivity ultra-low loss mirror of radius of 
curvature of ~5 cm. Within the cavity mode volume, they 
estimated approximately ≈  7 x 106 atoms. These 
experiments demonstrate that multi-level structure in a 
two-photon gain medium gives rise to a new behavior in 
the state of polarization of the generated beam. Further 
experiments are needed to fully explore the quantum 
statistical and nonlinear dynamics behavior of this new 
type of quantum oscillator. 

In the next section we derive the model Hamiltonian 
which describes the two-photon lasing effect stimulated by 
dressed field. Using the method of adiabatic elimination is 
derived the master equation for lasing field in the similar 
way as this was made in the paper [8]. 

 
 
3. Model hamiltonian and master equations 
 
Let us consider the Hamiltonian of the atomic system 

described above in interaction with dressed external field 
and new generated field 

 
,0 IHHH +=                          (1) 
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where 0H   and 1H   are the free part and interaction parts 
of the Hamiltonian, which can be represented in the 
following form    

,0 bbggiieeH pgie
++++= ωωωω hhhh    (1a) 

 
and      

( )

( ) ( ) .)..(,.).(,
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xik
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             (1b) 
 

Here  eωh  , iωh and gωh are the energies of the 

excited, intermediary and ground levels respectively,  +
dE   

and  dE   are the amplitudes of positive and negative 

frequency parts of dressed field;  +b and  b  are the 
creation and annihilation operators of generated field in 
the cavity,  pk   and  dk   are the wave vectors of  
generated and dressed fields direction of along the axis  x  
and z  respectively (see Fig. 3). 

 

 
Fig. 3. The diagram of two photon laser. 

 
In order to obtain the model Hamiltonian which 

describes the processes in which two-photon from dressed 
field are absorbed and two new photons are generated let 
us eliminate the operators of virtual level  e   from the 
Hamiltonian (1). Taking into account the solution of 
Heisenberg equation in the Born-Markov approximation 
[9] let us represent the state vector  )(te  through the 

initial unpopulated and lowest  )(tg   and  )(ti  states 
respectively 

,)(),,()(),,()0()( ,, tgzxtAtizxtAeete geie
ti e ++ −−= ω  

 
where the coefficients  ),,(, zxtA ie   and  ),,(, zxtA ge  
are determined by the expression  
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Introducing this vector state in the interaction part of 
Hamiltonian (1),  we obtained the following expression      
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represents the number of possibilities in which the bi-
photons can be generated for the same mode  K after  L  
characteristics the all polarization for this mode  

).exp(~ tizikEE dddd ω+−= ++  
 

 
Fig. 4. The dependences of P-function on complex 

variables α and β for parameter u1/k=0.9. 
 

Let us eliminate the rapidly oscillating terms from this 
equation. This procedure of elimination can be realized 
using eliminating procedure of oscillation parts from the 
Hamiltonian (2). Indeed using the initial (primitive) 
Hamiltonian (1), for the projectors )()( tgti , ii   and 

gg  we obtain the following solutions in Born-Markov 
approximation. 
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After substitution for projectors gi , ii  and 

gg   in expression  in (2)  we obtain  following 
expression for the effective Hamiltonian:  
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where G(z)  is presented in the following form:, 
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         (7) 

 
In the next section we will use the Hamiltonian (6) for 

study of the two photon emission in micro cavity. The 
Fokker-Plank equation which describes the emission 
processes below threshold is obtained.  

 
 
 
 
4. Master and fokker - plank equations for two  
    photon lasing in micro cavities  

 
Using the method of elimination of atomic variable 

proposed by Enaki et al [8] we obtained the following 
master equation for density matrix of bi-photon in the 
cavity, 
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Here  ])2/[(2 22
0

2
1 γωγσ +Ω−= NGu   represents the 

generation rate of photon pairs for full atomic inversion  

,0σN    ])2/[()2(2 22
0

2 γωωσχ +Ω−Ω−= NG   and 

).( 22
12

0
χσ += uu N

T  k describes the losses of bi-

photons (pairs of entangled photons) from the micro-
resonator and  21 2upu =  . We introduced here the bi-
photon operators belonging to su(1,1)  commutation 
algebra 
 

,],[,],[ ±±−+ ±=−= IIIIII zz  
 

where  (a)  for degenerate case the new operators are  
;2/2++ = bI ;2/2bI =−    4/)( ++ += bbbbI z   and 

for non-degenerate two photon process in which takes 
place two different photons we have  ;+++ = abI    

;I ba− =    2/)( ++ += aabbI z  . It is not difficult to 
observe from master equation (8), that in the process bi-
photon exchanges the Kasimir vector is conserved 
 

( )+−−+ +−= IIIIII z 2
122  

here  ),1(2 −= jjI   where j=1/4 and j=1/2  for 
degenerate and non-degenerate cases respectively. Number 
j represents the possibilities in which the bi-photons can be 
generated in the modes of cavity and depend on the mode 
structure of resonator. 

Let us first discuss the emission below threshold  
1uk >  . In this situation one can neglect the terms 

proportional to the square value of amplification 
coefficient  ).( 211 uuu >  

The equation (8) can be represented in the following 
form, 
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We introduce the complex P representation for su(1,1) 

algebra in the similar way as this representation was 
introduced by [10] for Bose quantum oscillators. Similar 
representation was introduced by [11] in parametrically 
amplification of photon pairs. Using this method, 
normalization of complex P representation can be found 
for many problems with similarities in diagonal P 
representation. In this case, many properties of P function 
and Q function remain specific and for su(1,1)  algebra. 
Let us introduce the generalized P representations for bi-
boson field in the cavity,  
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(10) 

 
where ),( βαμd   is the integration measure which may be 
chosen to define different classes of possible 
representations and  D is the domain of integration. The 
projection operator ),,( βαΛ is analytic in  ).,( βα   In 
this section we are interested in complex P representation 
in which  .),( βαβαμ ddd =  Here (α,β) are regarded as 
complex variables which are to be integrated an individual 
contours C and C′ . The coherent states for su(1,1)    can 
be defined in the following form  
 

),exp(0)1(,0)exp()1( 22 −∗+ −=−= II jj βββααα

 
and linear product of such two states is  
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The inverse value of this product is considered as a 

normalization coefficient for the projector operator  

.∗βα   Using the following action of operators  +I  

, −I , zI  , of  su(1,1)    algebra on the coherent state 
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we obtain the following expression for equation (9). 
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Following the method of partial integration of right 

hand site of this equation taking into account that 
notations, one can obtain the following Fokker-Plank 
equation 
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where P is complex representation for  su(1,1)  algebra,  

])2/[(2 22
0

2 γωγσ +Ω−= NGu  represent the 
generation rate of photon pairs for full atomic inversion  

kN ,0σ   is constant describing the losses of bi-photons 
(pairs of entangled photons) from the micro-resonator. 

The Fokker-Plank equation is obtained in the first 

order approximation on the interaction constant  2G . The 
solution of this equation can be easily found. 
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here D is the integration constant. In figure (4) we present 
the dependence of P as function of the complex variables 
α    and  β  for j=1/2. Number j represents the 
possibilities in which the bi-photons can be generated in 

the modes of cavity and depend on the mode structure of 
resonator. 

This solution describes the amplification of two 
photon lasing effect in the cavity stimulated by pump field. 
The density matrix one can be determined by the 
following expression, 
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In the good cavity limits when the losses from cavity 

k are less then the generation processes of bi-photons, the 
numbers of bi-photons in the cavity drastically increase. In 
this case the last terms in equation (8) increases more 
rapidly then terms proportionally with  u1 . The numerical 
and analytical behavior of the field in the cavity will be 
studied as part of future and continuing investigations. 

 
5.  Conclusion 
 
Using the methods of elimination operator for virtual 

states, we obtained the interaction Hamiltonian of atoms 
with pump laser field and generation in the cavity two 
photon field. This generation and annihilation processes is 
described by bi-photon operators  +I  and  −I   which 
correspond to su(1,1) symmetry. Using the P 
representation for su(1,1)  bi-boson field, the Fokker-Plank 
equation, which describes the behavior of cavity field 
below the threshold for two-photon laser field, is obtained. 
The solution for this equation provides the rate of 
generation photons in the cavity. The numerical 
stimulation of ),( βαP  strongly depends on the ratio 
between the coupling constant u1 with external field and 
cavity field and losses from cavity, k.  
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